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The problem of a disc-shaped hydraulic fracture crack [l] in a fluid-saturated poroelastic medium is 

considered. The crack is opened by a flow of viscous fluid infiltrating into the fracture layer. The stressed 

state and strains of the poroelastic medium are described by the Biot equations [2]. The solution of the 

spatial axisymmetrical problem of a disc-shaped hydraulic fracture crack in a poroelastic medium is 

obtained by the methods of the theory of generalized analytic functions [3]. Unlike in an elastic medium, in 

a poroelastic medium crack opening is governed not only by the pressure of the fluid of the fracture at its 

sides, but also by the distribution of the rate of leakage of the fluid into the layer. An analytic solution is 

obtained for a stationary “ideal” crack along which the pressure is constant. 

PLANAR problems of the theory of poroelastic media have been considered before in [4-6]. A 
representation of the general solution of the theoretical equations has been obtained in Papkovich- 
Neuber form [5], and those results were extended to weakly compressible liquids in [6]. A different 
approach, in which a representation of the general solution of plane problems is obtained in terms of 
two analytic functions, has been developed in [4]. Consideration has also been given [7-111 to the 
application of the theory of poroelastic media to the solution of problems of a hydraulic fracture of a 
fluid-saturated layer: stationary problems [7, 81, the planar non-stationary problem [9] and 
problems of Perkins-Kern cracks in poroelastic media [ 10,111. 

1. STATEMENT OF THE PROBLEM 

Let an axisymmetric crack in an infinite fluid-saturated porous space and uniform compressive 
stress field wm be kept in the open state by the fluid discharged into it which, moving along the crack, 
can filter through its walls into the pore space. It is assumed that the radius of the hole r. is much 
smaller than the crack length (L =G r,,), and so effects associated with the presence of the hole can be 
neglected. 

This problem arises, in particular, in connection with the problem of a hydraulic fracture of an 
oil-bearing layer [ 11. 

To describe the axisymmetric strain of a fluid-saturated porous medium and the filtration of a fluid 
in it, we will use the equations of coupled consolidation [2] in a cylindrical system of coordinates (i, 
j, k = r, @, z) with summation over repeated indices 
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Here aii is the total stress tensor, p is the pore pressure; B is Skempton’s parameter, u is Poisson’s 
ratio, v, is Poisson’s ratio corresponding to conditions where fluid cannot leave the medium [Z], G is 
the shear modulus, E;; is the strain tensor, wI is the radial displacement, w2 is the displacement in the 
direction of the axis of symmetry of the problem, m and rn(, are the mass of pore fluid per unit 
volume in the deformed and undeformed states, respectively, pCr is the density of the fluid, k is the 
permeability coefficient, p. is the viscosity of the fluid and u and v are the components of the 
filtration velocity in the radial direction and in the direction of the axis of symmetry. The system of 
notation for the elastic constants proposed earlier in [4] is used. 

Equations (1.1) and (1.2) are the equations of equilibrium and Hooke’s law for a fluid-saturated 
porous medium. The relation between the flow of pore fluid and its mass is defined by the law of 
conservation of mass and Darcy’s law. 

The chosen cylindrical system of coordinates is such that the plane of the crack lies in the 
coordinate plane z = 0. 

To describe the motion of discharged fluid along the hydraulic fracture crack, we use the equation 
of continuity and Poiseuille’s law 
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Here w is the opening of the crack sides, pc is the pressure of the fluid discharged into the crack. U, 
is the radial velocity of the fluid along the crack and vL is the rate of fluid leakage through the crack 
wall into the porous medium. 

The crack sides are subject to the boundary conditions 

ii,{:., t)=P(F, L=f), t), VL(F, 1)---c-Y(F‘ z==IO, 1) (1.5) 

3 _. METHOD OF SOLUTION 

To solve the axisymmetric elastic problem, we wilt use the theory of generalized analytic functions 
[3]. We introduce complex variables and derivatives with respect to those variables 

l=z+ir, T--z--if, ~jiat=‘jL(n/az-iai~r), cildI-:‘fz(a/dz$_r(?jar) 

Then Eqs (1.1) and (1.2) can be transformed to the form 

(2.1) 
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Integrating (2. l), we obtain 

F, (t, t) - a)+ (t, i) + 2 +&P (2.2) 

where @,(t, i) is the generalized analytic function, that is, the function satisfying the equation 
2aa*/at - (@* -@*)l(T - t) = 0 [3]. 

From (2.1) and (2.2) we obtain an equation for the function F(t, 7) = 2G(w - iu) 
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Assuming that p(r, z) is an analytic function with respect to the variables r, z, we integrate 
Eq. (2.3) 

F (t, t) = xiT; (t, 5) - 22 -&P-Y ++,(1,t) (2.4) 

where W is an arbitrary generalized analytic function and + is a generalized analytic function, 
related to a* by the relation 

@*=2(1--v)aco(t, ?)/&=2(i--v)W 

Using expression (2.4) and Hooke’s law, we obtain representations of the stress and strain fields 
of the saturated porous medium in terms of two generalized analytic functions 

2G (3 - iu) - ?l 5 dTp (t, t) = XG (t, I) - 22@’ - Y (2.5) 
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The derivative of the generalized function CD’ = d@(t, ?)/a.~ can also be written in the form 
@’ = -ia(ReQ)ldr+r-‘a(rIm@)lar [3] an so, after differentiating, (2.5) becomes d 

2G (r-la (ru)/dr + ialu,/c+) - qp + q S dfdp (1, t),~t = ~8’ + 22~ + Y’ W3) 

To change from generalized analytic functions @, * to ordinary analytic functions, we use the 
integral operators S and S-’ [3] 

(2.9) 

where S-‘Sq = cp and SS-‘0 = @‘; if Q, is a generalized analytic function, then S-‘0 = cp is an 
ordinary analytic function. 

After operating on expressions (2.7) and (2.8) with S-‘, after some algebraic manipulations we 
obtain 
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(2.11) 

where cp and JI are ordinary analytic functions of the complex variable =$ = x + iy (y = z). 
We will formulate a mixed boundary-value problem for the analytic functions cp and Jt. We shall 

use the superposition principle, that is, we shall represent the stress and strain fields in the form of 
the sum of two fields, one of which corresponds to a continuous solid under the effect of loads 
applied within it (a, is a uniform compressive stress and p_ is the unperturbed pressure of the pore 
fluid) and the other, to a solid with a cut, to the surfaces of which loads are applied. 

The rate of fluid leakage from the crack into the layer is equal to 

(2.12) 

The operator S-’ associates with the spatial axisymmetric deformed state (z, Y) a plane state 
which is symmetrical about x = 0 axis (y = z, r--+x). Bearing in mind that the values of the radicals 
occurring in the operator S-’ on different sides of the cut differ in sign, and putting to = 0, in order 
to satisfy the symmetry conditions (relative to the x = 0 axis), from (2.10) we obtain the boundary 
values of the analytic functions cp’. JI’ (y = z = I) + 0) 

=ttR-iT=cp’* (r)+$‘* (x) 
(2.13) 

I:(r) =P (r) -o--rl (l-J(r) -Pm) -‘h (P(r) -P (0) 1 

The solution of boundary-value problem (2.13) is known 1121. Taking into account the zero 
conditions at infinity and the conditions of symmetry about the x = 0 and y = 0 axes, this solution 
can be written in the form 

(2.14) 
cp’ (E) + qf (E) = (5 I- 5 + iy) 

The presence of the second term in the first expression of (2.14) is due to the fact that the function 
R is undefined at the vertices of the section x = +I (which were excluded from consideration when 
formulas (2.13) were obtained) and so, for the desired function cp’ - +‘, the presence of poles at the 
indicated points, the order of which depends on the order of the singularities in the neighbourhood 
of those points, must be allowed. In this case, the order of the poles is dictated by the root 
singularity of the stress tensor as x-+ +I. 

Allowing for the properties of the operator S, from (2.11) and (2.14) with y = z = 0 we obtain 

(2.15) 

Integrating (2.15) with respect to r taking into account the boundary conditions on the crack sides 
and singularities near the crack tips, after simplifying we obtain 
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(2.16) 
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If the criteria of fracture of [13] are used, then the constant A can also be expressed in terms of the 
rock adhesion modulus KI: 

A =-z-‘KJ1/2 

From (2.6) and (1.3) we obtain an equation for the transport of pore fluid in the layer: 

Let us consider the steady problem of the hydraulic fracture of a porous fluid-saturated medium 
of an axisymmetric immobile crack I = const. In this case, the piezoconduction equation (2.18) 

3. THE STEADY PROBLEM 

(2.18) 

reduces to Laplace’s equation for the pore fluid pressure 

Ap-0 (3.1) 

Apart from the pressure distribution on its sides pa(r), the expression for the opening of a 
hydraulic fracture crack contains the rate of fluid leakage into the layer V(T). On the crack sides, 
v(r) can be found from solution of Laplace’s equation (3.1) with given pressure pa(r). 

Because the problem is symmetrical about they = 0 plane, we shall formulate the boundary value 
problem for Laplace’s equation (3.1) in the upper half-plane y > 0: 

p (r, z=O) -PW=PI(r) --pa., r<l; i)p(r, z=O)/Lk=O, r>l 

P(C = --t=) -pa=0 
(3.2) 
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The boundary value problem (3.1)) (3.2) . m a cylindrical system of coordinates (r, z) can be solved 

by the method of dual integral equations [14] 

p (r, 2) = 2 
00 

‘. ~ 1 dk”‘J, (hr) i; dt cos ht & \ dss (~0 (4 - ~4 

v iJ o Jft2,sa 

Since V(Y) = -(Mp)~?p(r< 1, z = O)/az, from (2.16) and (3.3) the contribution 

from the leakage of fluid into the layer is 

(3.3) 

to crack opening 

(3.4) 

In the general case, the pressure distribution of the fluid in a crack can be found from the solution 

of the system of equations (1.4). 
Consider the special case of a hydraulic fracture crack with high hydraulic conductivity. The pressure 

distribution in such a crack can be taken to be approximately constant along its sides. 

p,(r) =po=cnnst (3.5) 

Substituting (3.5) into (3.4), we obtain 

(3.6) 

The total opening of an hydraulic fracture crack can be found from (2.16), using relations (3.5) and (3.6). We 
obtain 

(3.7) 

The first term in (3.7) corresponds to the purely elastic solution. The second term is associated with the fact 
that, in a poroelastic medium, the load is transmitted to both the fluid and solid phases, with different moduli of 
compressibility. If po>pm, this term produces a smaller crack opening than the elastic solution. And, finally, 

the third term is due to swelling of the poroelastic medium during filtration of the fluid from the crack into the 

medium (v > 0). 
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A study is made of equilibrium in a homogeneous elastic medium containing a thin inclusion whose elastic 

moduli differ substantially from those of the medium. The solution depends on two non-dimensional 

parameters: the ratio 6, of the characteristic linear dimensions of the inclusion and the ratio & of the elastic 

moduli of the inclusion and the medium. While 6, is always small, 6? may be either small or large. The 

problem of constructing the principal asymptotic terms of the elastic fields in the neighbourhood of a thin 

inhomogeneity based on these parameters has been reduced [l] to the solution of integral (pseudodifferen- 

tial) equations on the middle surface of the inclusion. Similar equations are obtained with two-dimensional 

models of thin inclusions [2-51. Some properties of the solutions of these equations will be discussed below. 

A method is proposed for the numerical solution of the equations, based on introducing a special class of 

approximating functions, thanks to which the problem can be reduced to a system of linear algebraic 

equations whose matrix can be calculated by analytical means. The idea of the method is due to V. G. 

Maz’ya. 

1. INTEGRAL EQUATIONS FOR THIN DEFORMABLE AND RIGID INCLUSIONS 

A HOMOGENEOUS elastic medium with tensor of moduli CO contains an inclusion that occupies a 
bounded region V, one of whose characteristic dimensions h is small compared with the other two 
(of order r), so that S1 = h/l is a small parameter. The inclusion is ideally connected to the medium 

t Prikl. Mat. Mekh. Vol. 56, No. 2, pp. 275-285, 1992. 


